Acta Crystallographica Section C

## Crystal Structure

Communications
ISSN 0108-2701

# Crystal engineering via $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ and $\mathbf{C}-\mathbf{H} \cdots \pi$ interactions in two substituted indoles 

A. R Choudhury, ${ }^{\text {a }}$ K. Nagarajan ${ }^{\text {b }}$ and T. N. Guru Row ${ }^{\text {a }}{ }^{*}$

${ }^{\text {a }}$ Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and ${ }^{\text {b }}$ HIKAL India Limited, Bannerghatta Road, Bangalore 560 078, Karnataka, India
Correspondence e-mail: ssctng@sscu.iisc.ernet.in

Received 17 May 2004
Accepted 9 July 2004
Online 11 August 2004
The crystal structures of 1-(4-fluorophenyl)-2-phenyl-4,5,6,7-tetrahydro- 1 H -indole, $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{FN}$, and 1-(4-fluorophenyl)-6,6-dimethyl-2-phenyl-4,5,6,7-tetrahydro-1 H -indole, $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{FN}$, have been determined in order to study the role of 'organic fluorine' in crystal engineering. These molecules pack in the crystal structure via different types of molecular motifs utilizing weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

## Comment

Crystal engineering via manipulation of hydrogen bonding has attracted much interest recently (Aakeröy, 1997; Guru Row, 1999; Desiraju, 2000, 2002; Hunter et al., 2001). Weak C$\mathrm{H} \cdots \pi$ (Nishio et al., 1995; Umezawa et al., 1999; Takahashi et al., 2000), $\pi$-stacking (Hunter, 1993, 1994) and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ (Desiraju \& Steiner, 1999; Steiner, 2002) interactions have been found to generate different crystal-engineering motifs. Organohalogen compounds have also been found to generate motifs via $\mathrm{C}-\mathrm{H} \cdots X, X \cdots X$ and $\mathrm{C}-X \cdots \pi$ interactions

(I) $R=\mathrm{H}$, (II) $R=\mathrm{Mc}$
(Thalladi et al., 1998). It has been shown that fluorine does not readily accept hydrogen bonds and hence behaves differently from chlorine and bromine (Shimoni \& Glusker, 1994; Howard et al., 1996; Dunitz \& Taylor, 1997; Desiraju \& Parthasarathi, 1989). We have shown that a significant number of compounds pack via weak interactions involving organic fluorine only (Prasanna \& Row, 2000a,b,c, 2001; Choudhury et al., 2002; Choudhury \& Guru Row, 2004) and generate
different packing motifs via $\mathrm{F} \cdots \mathrm{F}, \mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ and $\mathrm{C}-\mathrm{F} \cdots \pi$ interactions.

A structural study of 1-(4-fluorophenyl)-2-phenyl-4,5,6,7-tetrahydro- 1 H -indole, (I), and 1-(4-fluorophenyl)-6,6-dime-thyl-2-phenyl-4,5,6,7-tetrahydro- $1 H$-indole, (II), was undertaken because, in these compounds, the interactions predominantly involve 'organic fluorine' and there are no other strong directional interactions involving H atoms.

A view of (I), with the atom-labeling scheme, is shown in Fig. 1. In the tetrahydroindole ring, atoms C 5 and C 6 deviate from the $\mathrm{C} 4 / \mathrm{C} 9 / \mathrm{C} 8 / \mathrm{C} 7$ plane by 0.310 (2) and -0.456 (2) $\AA$, respectively. The two phenyl rings ( $\mathrm{C} 10-\mathrm{C} 15$ and $\mathrm{C} 16-\mathrm{C} 21$ ) subtend an angle of 126.41 (4) ${ }^{\circ}$ between their planes. Selected torsion angles are given in Table 1. The molecules pack via a $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ interaction, along with three independent $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ interactions (Table 2). Two independent $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions via atoms H11 and H15 form a chain of molecular dimers in the crystallographic $a$ direction (Fig. 2; Cg1 and Cg2 are the centers of gravity of the $\mathrm{N} 1 / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 9 / \mathrm{C} 8$ and $\mathrm{C} 16-\mathrm{C} 21$ rings, respectively). These dimers are connected to similar neighboring chains of molecular dimers via one $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$


Figure 1
A view of (I), with displacement ellipsoids shown at the $50 \%$ probability level.


Figure 2
A packing diagram of (I), showing sheets of molecules in the $a b$ plane linked via $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ interactions. [Symmetry codes: (i) $x$, $1+y, z$; (ii) $1-x,-y,-z$; (iii) $-x,-y,-z$.] Corresponding geometric details are given in Table 2.
interaction through atom H 3 , generating a sheet of molecules, as shown in Fig. 2, by a combination of inversion and translation operations. A further $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction generates a chain of molecules via a glide operation along the $c$ axis (Fig. 3); this interaction links the sheets and gives rise to a three-dimensional network.

Fig. 4 depicts (II) with the atom-labeling scheme. In the tetrahydroindole ring, atoms C 5 and C 6 deviate from the $\mathrm{C} 4 /$ C9/C8/C7 plane by 0.340 (2) and -0.420 (2) $\AA$, respectively. The two phenyl rings ( $\mathrm{C} 10-\mathrm{C} 15$ and $\mathrm{C} 16-\mathrm{C} 21$ ) subtend an angle of $115.38(4)^{\circ}$ between their planes. Selected torsion angles are given in Table 3. The molecules pack via a $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{F}$ interaction, along with two independent $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Table 4). These $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions via atoms H 11 and H 15 form a sheet motif in the $b c$ plane, resulting in molecular dimers (Fig. 5; Cg3 and Cg4 are the centers of gravity of the $\mathrm{N} 1 / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 9 / \mathrm{C} 8$ and $\mathrm{C} 16-\mathrm{C} 21$ rings, respectively). These dimers are linked via a unique $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ interaction through methyl atom $\mathrm{H} 22 A$ (Fig. 5), generating a


Figure 3
A molecular chain in (I), generated via $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions along the $c$ axis. [Symmetry code: (iv) $x, \frac{1}{2}-y, \frac{1}{2}+z$.]

Figure 4


A view of (II), with displacement ellipsoids shown at the $50 \%$ probability level.


Figure 5
A packing diagram of (II), showing a molecular sheet in the $b c$ plane, generated via $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ interactions. [Symmetry codes: (v) $x, y, z-1$; (vi) $1-x, 1-y, 1-z$; (vii) $1-x,-y, 2-z$.] Corresponding geometric details are given in Table 4.
sheet structure; there are only van der Waals interactions between the sheets.

In a previous study (Choudhury et al., 2004), we showed that, in the presence of a strong acceptor such as $\mathrm{C}=\mathrm{O}$, the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction takes priority over $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ interactions. Although $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ interactions are weaker than $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, these appear to play a significant role in the packing of molecules in the crystal structure because of a subtle change in the $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ interactions in the two structures described here. Our current results suggest that, while interactions involving 'organic fluorine' have a significant influence in generating supramolecular assemblies in organic solids, the general use of these interactions for the a priori prediction of packing motifs is yet to be harnessed.

## Experimental

Compounds (I) and (II) were synthesized according to the procedure reported by Nagarajan et al. (1985). The compounds were crystallized from solutions in dichloromethane and hexane (1:3) by slow evaporation at 263 K . Colorless crystals of (I) grew as long rods, whereas crystals of (II) grew as pale-yellow prisms.

## Compound (I)

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{FN} \\
& M_{r}=291.35 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=9.256(6) \AA \\
& b=10.939(7) \AA \\
& c=15.169(9) \AA \\
& \beta=97.75(1)^{\circ} \\
& V=1521.9(17) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
\begin{aligned}
& D_{x}=1.272 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 758 \\
& \quad \text { reflections } \\
& \theta=2.3-24.5^{\circ} \\
& \mu=0.08 \mathrm{~mm}^{-1} \\
& T=100.0(2) \mathrm{K} \\
& \text { Rod, colorless } \\
& 0.60 \times 0.20 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

## Data collection

Bruker SMART CCD area-detector diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.912, T_{\text {max }}=0.984$
15212 measured reflections
3073 independent reflections

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)=0.038\right.$
$w R\left(F^{2}\right)=0.097$
$S=1.03$
3073 reflections
271 parameters
All H-atom parameters refined

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$ for (I).

| C10-N1-C2-C16 | $-3.09(18)$ | C6-C7-C8-C9 | $15.50(18)$ |
| :--- | ---: | :--- | :---: |
| C6-C5-C4-C9 | $-42.60(16)$ | $\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 4$ | $3.6(2)$ |
| $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$ | $64.40(16)$ | $\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 8$ | $9.98(17)$ |
| C5-C6-C7-C8 | $-47.59(16)$ | $\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 10-\mathrm{C} 11$ | $113.62(13)$ |
| C10-N1-C8-C9 | $-175.33(11)$ | $\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 16-\mathrm{C} 17$ | $138.10(12)$ |

Table 2
Hydrogen-bonding geometry ( $\AA \AA^{\circ}$ ) for (I).
$C g 1$ and $C g 2$ are the centers of gravity of the $\mathrm{N} 1 / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 9 / \mathrm{C} 8$ and $\mathrm{C} 16-\mathrm{C} 21$ rings, respectively.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| C3-H3 $\cdots \mathrm{F}^{\mathrm{i}}$ | $0.98(2)$ | $2.56(2)$ | $3.292(2)$ | $131(1)$ |
| $\mathrm{C} 15-\mathrm{H} 15 \cdots C g 1^{\mathrm{ii}}$ | $0.98(2)$ | $2.68(2)$ | $3.495(3)$ | $141(1)$ |
| $\mathrm{C} 11-\mathrm{H} 11 \cdots C g 1^{\mathrm{iii}}$ | $0.97(2)$ | $2.82(2)$ | $3.646(3)$ | $144(1)$ |
| $\mathrm{C} 4-\mathrm{H} 4 B \cdots C g 2^{\text {iv }}$ | $1.00(2)$ | $2.82(2)$ | $3.708(3)$ | $149(1)$ |

Symmetry codes: (i) $x, 1+y, z$; (ii) $1-x,-y,-z$; (iii) $-x,-y,-z$; (iv) $x, \frac{1}{2}-y, \frac{1}{2}+z$.

## Compound (II)

## Crystal data

$\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{FN}$
$M_{r}=319.41$
Triclinic, $P \overline{1}$
$a=9.273(2) \AA$
$b=10.786(2) \AA$
$c=10.936(2) \AA$
$\alpha=61.647(3)$
$\beta=65.525(3)^{\circ}$
$\gamma$
$\gamma=69.210(3)^{\circ}$
$V=858.9(3) \AA^{\circ}$
$Z=2$
$D_{x}=1.235 \mathrm{Mg} \mathrm{m}^{-3}$

## Data collection

Bruker SMART CCD area-detector diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.938, T_{\text {max }}=0.969$
6945 measured reflections
3474 independent reflections

2619 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-11 \rightarrow 11$
$k=-13 \rightarrow 13$
$l=-18 \rightarrow 18$

$$
\left.\begin{array}{rl}
w= & 1 /[
\end{array} \sigma^{2}\left(F_{o}^{2}\right)+(0.0457 P)^{2}\right)
$$

Table 3
Selected torsion angles ( ${ }^{\circ}$ ) for (II).

| C10-N1-C2-C16 | $-7.05(16)$ | C6-C7-C8-C | $14.42(15)$ |
| :--- | ---: | :--- | ---: |
| C9-C4-C5-C6 | $-44.48(13)$ | C $7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 4$ | $3.16(17)$ |
| C4-C5-C6-C7 | $62.90(12)$ | $\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 10-\mathrm{C} 11$ | $113.35(12)$ |
| C5-C6-C7-C8 | $-44.57(12)$ | $\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 16-\mathrm{C} 17$ | $150.29(10)$ |
| C10-N1-C8-C9 | $-176.39(9)$ |  |  |

Table 4
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$ for (II).
Cg 3 and Cg4 are the centers of gravity of the $\mathrm{N} 1 / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 9 / \mathrm{C} 8$ and C16-C21 rings, respectively.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C} 22-\mathrm{H} 22 A \cdots \mathrm{~F} 1^{\mathrm{v}}$ | 0.99 (2) | 2.50 (2) | 3.422 (2) | 154 (1) |
| $\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{Cg} 3^{\text {vi }}$ | 0.98 (2) | 2.73 (2) | 3.549 (2) | 141 (1) |
| $\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{Cg} 4^{\text {vii }}$ | 0.98 (2) | 2.62 (2) | 3.659 (2) | 154 (1) |

Symmetry codes: (v) $x, y, z-1$; (vi) $1-x, 1-y, 1-z$; (vii) $1-x,-y, 2-z$.

## Refinement

$\begin{array}{ll}\text { Refinement on } F^{2} & w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0503 P)^{2}\right. \\ R\left[F^{2}>\right.\end{array}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$+0.2958 P$ ]
$w R\left(F^{2}\right)=0.097 \quad$ where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$S=1.05$
$(\Delta / \sigma)_{\text {max }}=0.001$
3474 reflections
$\Delta \rho_{\text {max }}=0.30$ e $\AA^{-3}$
305 parameters
$\Delta \rho_{\min }=-0.26 \mathrm{e} \AA^{-3}$
All H-atom parameters refined
All H atoms were located from difference Fourier maps and were refined isotropically $[\mathrm{C}-\mathrm{H}=0.960(16)-1.031$ (16) $\AA$ for (I) and 0.956 (14)-1.032 (12) A for (II)].

For both compounds, data collection: SMART (Bruker, 2004); cell refinement: SMART; data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997), POVRay (The POV-Ray Team, 2004) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2003).

The authors thank the Department of Science and Technology, India, for data collection on the CCD facility set up at IISc, Bangalore, under the IRHPA-DST program. ARC acknowledges IISc, Bangalore, for a senior research fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1756). Services for accessing these data are described at the back of the journal.

## References

Aakeröy, C. B. (1997). Acta Cryst. B53, 569-586.
Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Bruker (2004). SMART (Version 5.628) and SAINT (Version 6.45a). Bruker AXS Inc., Madison, Wisconsin, USA.
Choudhury, A. R. \& Guru Row, T. N. (2004). Cryst. Growth Des. 4, 47-52.
Choudhury, A. R., Nagarajan, K. \& Guru Row, T. N. (2004). Acta Cryst. C60, o219-o222.
Choudhury, A. R., Urs, U. K., Guru Row, T. N. \& Nagarajan, K. (2002). J. Mol. Struct. 605, 71-77.
Desiraju, G. R. (2000). J. Chem. Soc. Dalton Trans. 21, 3745-3751.

Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565-573.
Desiraju, G. R. \& Parthasarathi, R. (1989). J. Am. Chem Soc. 111, 8725-8726.
Desiraju, G. R. \& Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.
Dunitz, J. D. \& Taylor, R. (1997). Chem. Eur. J. 3, 89-98.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Guru Row, T. N. (1999). Coord. Chem. Rev. 183, 81-100.
Howard, J. A. K., Hoy, V. J., O’Hagan, D. \& Smith, G. T. (1996). Tetrahedron, 52, 12613-12622.
Hunter, C. A. (1993). Angew. Chem. Int. Ed. Engl. 32, 1584-1586.
Hunter, C. A. (1994). Chem. Soc. Rev. 23, 101-109.
Hunter, C. A., Lawson, K. R., Perkins, J. \& Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651-669.
Nagarajan, K., Talwalker, P. K., Shah, R. K., Mehta, S. R. \& Nayak, G. V. (1985). Indian J. Chem. Sect. B, 24, 98-111.

Nishio, M., Umezawa, Y., Hirota, M. \& Takeuchi, Y. (1995). Tetrahedron, 51, 8665-8701.
Prasanna, M. D. \& Guru Row, T. N. (2000a). Cryst. Eng. 3, 135-154.

Prasanna, M. D. \& Guru Row, T. N. (2000b). CrystEngComm, 2, 134-140.
Prasanna, M. D. \& Guru Row, T. N. (2000c). J. Mol. Struct. 559, 225-261.
Prasanna, M. D. \& Guru Row, T. N. (2001). J. Mol. Struct. 562, 55-61.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Shimoni, L. \& Glusker, J. P. (1994). Struct. Chem. 5, 383-397.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.
Takahashi, H., Tsuboyama, S., Umezawa, Y., Honda, K. \& Nishio, M. (2000). Tetrahedron, 56, 6185-6191.
Thalladi, V. R., Weiss, H.-C., Bläser, D., Boese, R., Nangia, A. \& Desiraju, G. R. (1998). J. Am. Chem. Soc. 120, 8702-8710.

The POV-Ray Team (2004). POV-Ray for Windows. Version 3.6. URL: http:// www.povray.org.
Umezawa, Y., Tsuboyama, S., Takahashi, H., Uzawa, J. \& Nishio, M. (1999). Bioinorg. Med. Chem. Lett. 7, 2021-2026.
Watkin, D. M., Pearce, L. \& Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

